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4ABSTRACT

The proposed method for testing and evaluating data generated by instru-

mented impact testings of notch bend specimens is evaluated by the experimental

: and numerical dynamic fracture results obtained in the past. As expected,

brittle fracture of the photoelastic, steel and aluminum impacted notch speci-

mens considered in this paper cannot be predicted by the static stress intensity

factors at the instant of crack propagation. The fracture energy was only a

fraction of the total absorbed energy and was equally unsuitable for dynamic

fracture characterization of these specimens. This critical evaluation of the

proposed method suggests that despite the enormous correlation studies which

justify the use of static analysis, neither the proposed method nor the result-

ant static stress intensity factor should be used to evaluate the fracture

data of impacted notch bend specimens of slightly different configurations.
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NOMENCLATURE

a crack length

B specimen thickness

co longitudinal bar stress wave velocity

C specimen load-line compliance
LL

E modulus of elasticity
'9

K mode I stress intensity factor

Kdyn mode I dynamic stress intensity factor
! star

K mode I static stress intensity factor

Idi Kid modelI dynamic initiation fracture toughness

P applied tup load

S support span of beam

tf time to fracture from impact initiation

U energy

VU) tup velocity at impact

W beam depth

load line displacement

normal stress

INTRODUCTION

For over a decade, a variety of instrumented impact testings of notch bend

specimens have been used to characterize the fracture resistance of brittle as

well as ductile materials. Test specimens for such dynamic fracture testing

range from the large notch bend specimens of 38x30x228 cm [i]* to the standard

*Numbers in brackets refer to References at the end of this paper.



Charpy V-notched precracked specimens of lOxlOx55 mm [2,3] with test materials

ranging from structural steel, to aluminum, titanium, polymers, carbon-epoxy

composites and ceramics. The results are normally presented in terms of total

absorbed energy (Charpy fracture energy), fracture energy, and dynamic initia-

tion fracture toughness, KId, all of which are to characterize the material

resistance to dynamic loading. Unfortunately, the last two quantities are not

directly measurable and the all-inclusive total absorbed energy includes the

parasitic kinetic energy for propelling the fractured specimen. As a result,

literature is abundant with procedures for interpreting the test results, most

*of which have involved correlation studies of static analyses of dynamic frac-

ture data of impacted notch bend specimens. While these data have been pre-

sented in terms of total absorbed energy, i.e., Charpy fracture energy, in the

Qpast, the recent trend is to present the test results in terms of dynamic frac-

ture toughness, Kid' The KId data and the restrictive conditions under which

the data are valid are summarized among others in References [4] and F5]. These

empirical procedures are all based on static fracture analysis with restrictive

test conditions and data interpretation procedures which assure that the effects

of "inertia loading" are excluded. This a priori data filtering excludes the

high strain rate loading condition and thus reduces the impact testing to a

quasi-static testing condition which in part defeats the original purpose of

the test. Despite this uncertainty in its physical characterization, the im-

pacted notch bend specimen is a very popular test specimen because of the simple

test procedure involved and its compact specimen size.

With the recent developments in numerical and experimental procedures for

analyzing the dynamic responses of cracked structures, some results of numerical

[6,7] and experimental [8] dynamic analyses of impacted notch bend specimens are

becoming available. One common conclusion which emerges from these dynamic



analyses involving various specimen geometries and materials is that the com-

monly used static analysis of impact data can lead to erroneous Kid values.

The authors have also studied dynamic fracture responses of various impacted

notch bend specimens over the past several years [9-12] but did not present

these results in terms of the recently proposed method for impact testings of

notch bend specimens [5]. The purpose of this paper, thus, is to review these

past results in view of recent attempts [13] to relate the results of impacted

notch bend specimen to parameters related to dynamic fracture mechanics and in

particular, to the dynamic initiation fracture toughness, Kid.

STATIC ANALYSIS OF IMPACTED NOTCH BEND SPECIMEN

Since elastodynamic analysis of an impacted notch bend specimen can, at

best, be obtained only by executing large scale finite differences or finite

element codes, data evaluation procedures which have evolved to date are based

on static analysis of this transient phenomenon. Among the several but similar

procedures in use [2-5], the procedure as reported in Reference [5] is briefly

described in the following.

The foremost criterion for guaranteeing that specimen inertia oscillation,

which refers to the beam vibration of the specimen and which accounts for only

part of the dynamic effects, has subsided is the 3T requirement, where T is

related to the period of the apparent oscillations and can be predicted by [13]

- = 1.68 (SWEBCLL) /2/co (1)

The specimen compliance, CLL, in equation (1) can be derived from the known

specimen deflection in the notch bend beam as [14]

CLL P =Pno crack [l+ 6 V ] (2)

where [_lno crack is the compliance of the uncracked beam and VJ a , which is

the correction factor due to presence of a crack, is represented in a polynomial

of a in Reference [14].
w



By adjusting the impact velocity of the tup as well as the specimen geom-

etry, ring down of the impacted specimen is believed to occur when the time to

fracture, tf > 3T. The dynamic stress intensity can then be computed by using

the following static formula [15] of

'I .P /' f (3)'Am BW

where Pm is the maximum static tup load, and f(l3I which is a geometric parameter

which corrects for the finite geometry of the beam, is represented by a polynom-

ial a in Reference [15).

In addition, complete fracture of the specimen is guaranteed by a conserva-

"0 tive requirement that the total available energy at impact, U0 , is larger than

three times the energy dissipated at maximum load, or 3U . This requirement
m

4 also ensures that the tup velocity is not reduced during the fracture initia-

tion event more than 20 percent of its initial impact velocity. In addition,

a loading rate in terma of the static stress intensity factor rate of KI

50 - 500 GPavii/s is computed by the simple formula of:

K t (;

Although the above static analysis is elastic, impacted notch bend speci-

mens are used to characterize also the fracture resistance of ductile materials,

such as A533B steel and low carbon steel. Thus the influence of dynamic plas-

ticity cannot be ignored in practice. Although some attempts have been made to

use J for reducing data in the presence of plastic yielding [3,13], such recom-

mended procedures are yet to be established, due to the lack of a definitive

static ductile fracture criterion and, needless to mention, a dynamic ductile

fracture initiation criterion at this time.

IMPACTED NOTCH BEND PHOTOELECTRIC SPECIMENS

The dynamic stress intensity factors obtained previously, either experimen-

tally by the use of dynamic photoelasticity or by dynamic finite element analysis



of impacted, notch bend photoelastic specimens [10,11], are used to assess the

validity of the recommended procedures for dynamic fracture-toughness testing.

The two photoelastic specimens of Homalite-O0 and polycarbonate used in this

comparison are shown in Figure 1. The Homalite-lO0 and polycarbonate specimens

*model brittle and somewhat ductile materials, respectively. All cracks were

fatigued precracked in these specimens. The specimen geometries which were

primarily designed to satisfy the photoelastic requirements are admittedly

longer and thinner than the commonly used metallic specimens. Nevertheless,

the two-dimensional elastodynamic responses of the photoelastic specimens, with

proper care, can be scaled to metallic specimens of smaller dimensions [16,17],

*and thus these dynamic photoelasticity results were used to dramatize the ef-

4
fectiveness of the recommended procedures. Also shown in Figure 1 is the in-

strumented tup from which the impact load was obtained.

Figure 2 shows typical tup load traces for the Homalite-lO0 and polycar-

bonate specimens. These load traces do not exhibit the oscillating but increas-

ing load responses with time, such as those shown in References [4] and [8],

but follow those shown in Reference [5]. These differences could be in part

attributed to the higher tup velocities at impact, V0 , used in these series of

tests, as shown in Table 1.

Figures 3 and 4 show the static and dynamic stress intensity factors, K stat

and K dyn , up to crack propagation in typical Homalite-100 and polycarbonate

specimens, respectively. The static stress intensity factor was computed by

substituting the measured instantaneous tup load in equation 3. The dynamic

stress intensity factors were either obtained directly by fitting the singular

near-field state of stress to the transient isochromatics surrounding the sta-

tionary crack tip, or by using a calibrated crack opening displacement obtained

from dynamic finite element analysis. Details of the experimental and numerical
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procedure used are found in References [15] and [16].

Crack propagation initiated from the fatigued crack tip in four Homalite-

100 impacted notch bend specimens within tf ; 190 microseconds after initiation

of impact, as shown in Figure 3. Equations (1) and (2) yielded a calculated

T . 740 microseconds with a tf/T = 0.26 which violates the 3T impact duration

set forth in the recommended procedure. Also notable is the six-fold differ-

ence incalclatd Kstat y
ences in calculated Ki and the actual K at crack propagation in Fig-

ure 3.

For the seven polycarbonate specimens, the time to fracture is tf 1000
f.

microseconds, as shown in Figure 4. The calculated T = 980 microseconds yields

a t /T 7 1 and is one-third of the specified 3T limitation. The large differ-
f

ences between the statically computed KlStat and the actual dynamic K are

also noted. These differences are in contrast with the reasonable agreements

$ in the Charpy data in the 1T region shown in Reference [5].

Although the cracks propagated much earlier than the 3T hold time, the

tup load traces for the impacted polycarbonate notch bend specimen in Figure 2

show that the tup load continues to oscillate without abatement after tf through

the duration approaching the 3T limit. These oscillations are similar to those

shown in Reference [8], and thus suggest that KI
dyn would not converge to KI

sta t

even if initiation of crack propagation was restrained beyond the suggested 3
T

limit by lowering the tup velocities at impact in these photoelastic specimens.

Figures 5 and 6 show typical computed energy partitions in impacted Homalite-

100 and polycarbonate notch bend specimens. The small percentage of the fracture

energy in terms of the total input work at complete specimen fracture shows that the

total absorbed energy or the Charpy fracture energy cannot possibly be used to

characterize dynamic fracture of Homalite-l00. Although the fracture energy oc-

cupies about 57 percent of the total absorved energy in the polycarbonate
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specimen, for the same reason, would not be an appropriate quantity for dynamic

characterization of polycarbonate.

IMPACTED NOTCH BEND STEEL AND ALUMINUM SPECIMENS
:: t dyn

A dynamic finite element code was used to determine the increasing KI

leading to K at the onset of crack propagation in 25.4 mm thick A533B steel
Id

at -180C and at room temperature, and a 16 mm thick aluminum notch bend speci-

men [12]. The cracks in the two A533B steel specimens were fatigue-precracked

while a mechanically sharpened notch tip of 0.025 mm radius was used in the

aluminum specimen. These specimens were instrumented with a 3x3 mm strain gage

near the notch tip. The transient strain recorded during impact was then re-

lated to an equivalent static stress intensity factor following Loss's proce-

dure [16]. A second strain gage was also located at 1/4 span on the compres-

sion edge of the aluminum specimen. Extensive numerical analyses [12] verified

that the proximity of the strain gage and the use of instantaneous dynamic

strains appeared to compensate for lack of dynamic analysis in Loss's static

procedures for computing K dyn The loading rates, k Idyn , and the tup veloci

ties at impact, V0, in these tests are shown in Table 1.

Figures 7 and 8 show the K stat and K dyu variations in an impacted A533B
I I53

steel tested at -18C and room temperature, respectively. With the exception

of the fortuitous coincidence of Kl and Kldyn at the initiation of crack

propagation in Figure 7, K d yn shows no tendency to converge to K Stat in these

figures. The time to fracture, tf, is about 2T and 1.2T for the two A533B

speciemns, but the lack of visible convergence of K Idyn to K stat again indi-

cates that Kldyn will not converge to KlStat even at the 3T period.

Figure 9 shows the K stat and K dyn variations in impacted 6061 aluminumI uI

notch bend specimens with tf/T = 0.81. Again, the notable differences between

dyn stat statK and K s  , with no trend of abatement, are noted. K computed from

I II II I i I I I
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the 1/4-point strain gage signals, following the procedure described in Reference

[5], is not shown in Figure 9. The significant differences in the tup load trace

and 1/4-point gage signal, as shown in Figure 11 in Reference [12], would have

led to Ksta, which is appreciably different than the Kdyn in Figure 9. While

the energy partitions of the above three metallic specimens were not determined

due to lack of crack velocity measurements during fracture, experiences with

other dynamic fracture specimens such as single edged notch (SEN) specimens

subjected to uniform loading and fixed end displacement loading [18] show that

the total fracture energy dissipated in such specimens would be, at the best,

about half of the total input work of the specimen.

CONCLUSIONS AND DISCUSSIONS

Results of our previous experimental and numerical analyses of photoelastic

and metallic impacted notch bend specimens, when evaluated in terms of the

recommended guidelines for dynamic fracture toughness testing, show that these

procedures cannot be extended to the larger specimen configurations used in

this analysis.

The credible consistency in the experimental KId in Reference [5] is based

on internal correlations of the dynamic data evaluated statically, which may or

may not relate to the actual K I. The results of the photoelastic test data

show that this internal correlation of statically computed KId breaks down. On

the other hand, Figures 3 in References [10] and [11] and Figure 8 in Reference

[19] show that the dynamically evaluated KId are remarkably the same among the

four and six Homalite-100 and the seven polycarbonate impacted notch bend speci-

mens tested.

The above comparative study indicates that valid KId data could be generated

through impacted notch bend tests if appropriate dynamic analysis is used. The

authors feel that efforts should be expended in developing such a dynamic analysis

.~ ~ ~ .- . .-
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procedure rather than in developing restrictive conditions under which static
4I

analysis can be used. Conceivably, the long time delay necessary to validate

static analysis could obviate the loading rate effect originally sought in

these impact tests.
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f-64 mm-.

25mm 7 m 25mm

O1 T c
13mm 30mm3m

-4
I3mmR 29mC r

Outputo
DROP WEIGHT TUPI

DROP WEIGHT TUP

THICKNESS HOMALITE- 100 B = 9.5 mm7
POLYCARBONATE B3.2mm W89mm

1a =25mm

S =368mm
Lz 394mm r

SPECIMEN

FIGURE I .HOMALITE -100 AND POLYCARBONATE IMPACTED NOTCH
BEND SPECIMEN.
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(a)HOMALITE-IO0 SPECIMEN

VERTICAL ONE DIVISION 311 N
HORIZONTAL ONE DIVISION 0.1 m sec

(b) POLYCARBONATE SPECIMEN
VERTICAL ONE DIVISION = 389 N
HORIZONTAL ONE DIVISION = 0.2 m sec

FIGURE 2 .TLJP LOAD TRACES FOR IMPACTED HOMALITE- 100
AND POLYCARBONATE SPECIMENS.
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FIGURE 3. STRESS INTENSITY FACTORS OF AN IMPACTED
HOMALITE -IO0 NOTCH BEND SPECIMEN.
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FIGURE 4. STRESS INTENSITY FACTORS OF AN IMPACTED
POLYCARBONATE NOTCH BEND SPECIMEN.
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FIGURE 6 .COMPUTED ENERGIES IN IMPACTED POLYCARBONATE
NOTCHED BEND SPECIMEN.
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FIGURE 8 .STRESS INTENSITY FACTORS OF AN
IMPACTED A533B STEEL NOTCHED BEND
SPECIMEN. (L 9229, Wx51, 8.25,o=25mm)
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FIGURE 9 STRESS INTENSITY FACTORS OF AN IMPACTED 6061
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